Você está vendo a documentação do Kubernetes versão: v1.21

Kubernetes v1.21 a documentação não é mais mantida ativamente. A versão que você está visualizando no momento é uma captura instantânea estática. Para obter documentação atualizada, consulte última versão.

Sobrecarga de Pod

FEATURE STATE: Kubernetes v1.18 [beta]

Quando você executa um Pod num nó, o próprio Pod usa uma quantidade de recursos do sistema. Estes recursos são adicionais aos recursos necessários para executar o(s) contêiner(s) dentro do Pod. Sobrecarga de Pod, do inglês Pod Overhead, é uma funcionalidade que serve para contabilizar os recursos consumidos pela infraestrutura do Pod para além das solicitações e limites do contêiner.

No Kubernetes, a sobrecarga de Pods é definido no tempo de admissão de acordo com a sobrecarga associada à RuntimeClass do Pod.

Quando é ativada a Sobrecarga de Pod, a sobrecarga é considerada adicionalmente à soma das solicitações de recursos do contêiner ao agendar um Pod. Semelhantemente, o kubelet incluirá a sobrecarga do Pod ao dimensionar o cgroup do Pod e ao executar a classificação de prioridade de migração do Pod em caso de drain do Node.

Habilitando a Sobrecarga de Pod

Terá de garantir que o Feature Gate PodOverhead esteja ativo (está ativo por padrão a partir da versão 1.18) em todo o cluster, e uma RuntimeClass utilizada que defina o campo overhead.

Exemplo de uso

Para usar a funcionalidade PodOverhead, é necessário uma RuntimeClass que define o campo overhead. Por exemplo, poderia usar a definição da RuntimeClass abaixo com um agente de execução de contêiner virtualizado que use cerca de 120MiB por Pod para a máquina virtual e o sistema operacional convidado:

---
kind: RuntimeClass
apiVersion: node.k8s.io/v1beta1
metadata:
    name: kata-fc
handler: kata-fc
overhead:
    podFixed:
        memory: "120Mi"
        cpu: "250m"

As cargas de trabalho que são criadas e que especificam o manipulador RuntimeClass kata-fc irão usar a sobrecarga de memória e cpu em conta para os cálculos da quota de recursos, agendamento de nós, assim como dimensionamento do cgroup do Pod.

Considere executar a seguinte carga de trabalho de exemplo, test-pod:

apiVersion: v1
kind: Pod
metadata:
  name: test-pod
spec:
  runtimeClassName: kata-fc
  containers:
  - name: busybox-ctr
    image: busybox
    stdin: true
    tty: true
    resources:
      limits:
        cpu: 500m
        memory: 100Mi
  - name: nginx-ctr
    image: nginx
    resources:
      limits:
        cpu: 1500m
        memory: 100Mi

No tempo de admissão o controlador de admissão RuntimeClass atualiza o PodSpec da carga de trabalho de forma a incluir o overhead como descrito na RuntimeClass. Se o PodSpec já tiver este campo definido o Pod será rejeitado. No exemplo dado, como apenas o nome do RuntimeClass é especificado, o controlador de admissão muda o Pod de forma a incluir um overhead.

Depois do controlador de admissão RuntimeClass, pode verificar o PodSpec atualizado:

kubectl get pod test-pod -o jsonpath='{.spec.overhead}'

A saída é:

map[cpu:250m memory:120Mi]

Se for definido um ResourceQuota, a soma das requisições dos contêineres assim como o campo overhead são contados.

Quando o kube-scheduler está decidindo que nó deve executar um novo Pod, o agendador considera o overhead do pod, assim como a soma de pedidos aos contêineres para esse Pod. Para este exemplo, o agendador adiciona as requisições e a sobrecarga, depois procura um nó com 2.25 CPU e 320 MiB de memória disponível.

Assim que um Pod é agendado a um nó, o kubelet nesse nó cria um novo cgroup para o Pod. É dentro deste Pod que o agente de execução de contêiners subjacente vai criar contêineres.

Se o recurso tiver um limite definido para cada contêiner (QoS garantida ou Burstrable QoS com limites definidos), o kubelet definirá um limite superior para o cgroup do Pod associado a esse recurso (cpu.cfs_quota_us para CPU e memory.limit_in_bytes de memória). Este limite superior é baseado na soma dos limites do contêiner mais o overhead definido no PodSpec.

Para CPU, se o Pod for QoS garantida ou Burstrable QoS, o kubelet vai definir cpu.shares baseado na soma dos pedidos ao contêiner mais o overhead definido no PodSpec.

Olhando para o nosso exemplo, verifique as requisições ao contêiner para a carga de trabalho:

kubectl get pod test-pod -o jsonpath='{.spec.containers[*].resources.limits}'

O total de requisições ao contêiner são 2000m CPU e 200MiB de memória:

map[cpu: 500m memory:100Mi] map[cpu:1500m memory:100Mi]

Verifique isto comparado ao que é observado pelo nó:

kubectl describe node | grep test-pod -B2

A saída mostra que 2250m CPU e 320MiB de memória são solicitados, que inclui PodOverhead:

  Namespace                   Name                CPU Requests  CPU Limits   Memory Requests  Memory Limits  AGE
  ---------                   ----                ------------  ----------   ---------------  -------------  ---
  default                     test-pod            2250m (56%)   2250m (56%)  320Mi (1%)       320Mi (1%)     36m

Verificar os limites cgroup do Pod

Verifique os cgroups de memória do Pod no nó onde a carga de trabalho está em execução. No seguinte exemplo, crictl é usado no nó, que fornece uma CLI para agentes de execução compatíveis com CRI. Isto é um exemplo avançado para mostrar o comportamento do PodOverhead, e não é esperado que os usuários precisem verificar cgroups diretamente no nó.

Primeiro, no nó em particular, determine o identificador do Pod:

# Execute no nó onde o Pod está agendado
POD_ID="$(sudo crictl pods --name test-pod -q)"

A partir disto, pode determinar o caminho do cgroup para o Pod:

# Execute no nó onde o Pod está agendado
sudo crictl inspectp -o=json $POD_ID | grep cgroupsPath

O caminho do cgroup resultante inclui o contêiner pause do Pod. O cgroup no nível do Pod está um diretório acima.

        "cgroupsPath": "/kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2/7ccf55aee35dd16aca4189c952d83487297f3cd760f1bbf09620e206e7d0c27a"

Neste caso especifico, o caminho do cgroup do Pod é kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2. Verifique a configuração cgroup de nível do Pod para a memória:

# Execute no nó onde o Pod está agendado
# Mude também o nome do cgroup para combinar com o cgroup alocado ao Pod.
 cat /sys/fs/cgroup/memory/kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2/memory.limit_in_bytes

Isto é 320 MiB, como esperado:

335544320

Observabilidade

Uma métrica kube_pod_overhead está disponível em kube-state-metrics para ajudar a identificar quando o PodOverhead está sendo utilizado e para ajudar a observar a estabilidade das cargas de trabalho em execução com uma sobrecarga (Overhead) definida. Esta funcionalidade não está disponível na versão 1.9 do kube-state-metrics, mas é esperado em uma próxima versão. Os usuários necessitarão entretanto construir o kube-state-metrics a partir do código fonte.

Qual é o próximo

Última modificação November 03, 2022 at 10:27 AM PST : Merge pull request #37565 from chalin/chalin-im-ga4-release-1.21-2022-10-27 (7ed77d7)